Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C3.A4

Direct product G=N×Q with N=C2 and Q=C22×C3.A4
dρLabelID
C23×C3.A472C2^3xC3.A4288,837


Non-split extensions G=N.Q with N=C2 and Q=C22×C3.A4
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C3.A4) = C2×C4×C3.A4central extension (φ=1)72C2.1(C2^2xC3.A4)288,343
C2.2(C22×C3.A4) = D4×C3.A4central stem extension (φ=1)366C2.2(C2^2xC3.A4)288,344
C2.3(C22×C3.A4) = C22×Q8⋊C9central stem extension (φ=1)288C2.3(C2^2xC3.A4)288,345
C2.4(C22×C3.A4) = Q8×C3.A4central stem extension (φ=1)726C2.4(C2^2xC3.A4)288,346
C2.5(C22×C3.A4) = C2×Q8.C18central stem extension (φ=1)144C2.5(C2^2xC3.A4)288,347
C2.6(C22×C3.A4) = 2+ 1+4⋊C9central stem extension (φ=1)724C2.6(C2^2xC3.A4)288,348
C2.7(C22×C3.A4) = 2- 1+4⋊C9central stem extension (φ=1)1444C2.7(C2^2xC3.A4)288,349

׿
×
𝔽